Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟MiniMax-M1: открытя reasoning‑LLM с контекстом 1M

MiniMax-M1 — первая в мире open-weight гибридная reasoning‑LLM c 1M контекстом (8× DeepSeek R1) и гибридной архитектурой MoE + lightning attention.
• 456 млрд параметров (45,9 млрд активируются на токен), сверхэффективная генерация — 25% FLOPs DeepSeek R1 на 100K токенов
• Обучение через RL с новым алгоритмом CISPO, решающим реальные задачи от математики до кодинга
• На обучение было потрачено $534K, две версии — 40K/80K “thinking budget”
• Обходит DeepSeek R1 и Qwen3-235B на бенчмарках по математике и кодингу,
• Топ результат на задачах для software engineering и reasoning



Бенчмарки:
AIME 2024: 86.0 (M1-80K) vs 85.7 (Qwen3) vs 79.8 (DeepSeek R1)

SWE-bench Verified: 56.0 vs 34.4 (Qwen3)

OpenAI-MRCR (128k): 73.4 vs 27.7 (Qwen3)

TAU-bench (airline): 62.0 vs 34.7 (Qwen3)

LongBench-v2: 61.5 vs 50.1 (Qwen3)


➡️ Попробовать можно здесь

Hugging Face: https://huggingface.co/collections/MiniMaxAI/minimax-m1-68502ad9634ec0eeac8cf094
GitHub: https://github.com/MiniMax-AI/MiniMax-M1
Tech Report: https://github.com/MiniMax-AI/MiniMax-M1/blob/main/MiniMax_M1_tech_report.pdf


@ai_machinelearning_big_data

#llm #reasoningmodels #minimaxm1
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1863
Create:
Last Update:

🌟MiniMax-M1: открытя reasoning‑LLM с контекстом 1M

MiniMax-M1 — первая в мире open-weight гибридная reasoning‑LLM c 1M контекстом (8× DeepSeek R1) и гибридной архитектурой MoE + lightning attention.
• 456 млрд параметров (45,9 млрд активируются на токен), сверхэффективная генерация — 25% FLOPs DeepSeek R1 на 100K токенов
• Обучение через RL с новым алгоритмом CISPO, решающим реальные задачи от математики до кодинга
• На обучение было потрачено $534K, две версии — 40K/80K “thinking budget”
• Обходит DeepSeek R1 и Qwen3-235B на бенчмарках по математике и кодингу,
• Топ результат на задачах для software engineering и reasoning



Бенчмарки:
AIME 2024: 86.0 (M1-80K) vs 85.7 (Qwen3) vs 79.8 (DeepSeek R1)

SWE-bench Verified: 56.0 vs 34.4 (Qwen3)

OpenAI-MRCR (128k): 73.4 vs 27.7 (Qwen3)

TAU-bench (airline): 62.0 vs 34.7 (Qwen3)

LongBench-v2: 61.5 vs 50.1 (Qwen3)


➡️ Попробовать можно здесь

Hugging Face: https://huggingface.co/collections/MiniMaxAI/minimax-m1-68502ad9634ec0eeac8cf094
GitHub: https://github.com/MiniMax-AI/MiniMax-M1
Tech Report: https://github.com/MiniMax-AI/MiniMax-M1/blob/main/MiniMax_M1_tech_report.pdf


@ai_machinelearning_big_data

#llm #reasoningmodels #minimaxm1

BY Machine learning Interview





Share with your friend now:
tg-me.com/machinelearning_interview/1863

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Unlimited members in Telegram group now

Telegram has made it easier for its users to communicate, as it has introduced a feature that allows more than 200,000 users in a group chat. However, if the users in a group chat move past 200,000, it changes into "Broadcast Group", but the feature comes with a restriction. Groups with close to 200k members can be converted to a Broadcast Group that allows unlimited members. Only admins can post in Broadcast Groups, but everyone can read along and participate in group Voice Chats," Telegram added.

Machine learning Interview from cn


Telegram Machine learning Interview
FROM USA